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INTRODUCTION

One of the difficulties faced in the analysis of structural/geo-
technical systems is numerically modeling a semi-infinite domain. The
finite element method (FEM) provides an effective numerical tool for
modeling complex constitutive relations which characterize soil behaviors;
however, since the FEM is domain-based, it has difficulty modeling the
semi-infinite domain. Simply truucating the domain at some arbitrary
distance can result in the reflection of strain energy from the artifi-
cial boundary which should continue to he transmitted into the semi-
infinite domain. The reflected energy can contaminate the near field
region where the solution is of interest.

Considerable effort has been devoted to developing "silent" or
transmitting boundaries in the frequency domain which allow for the
outward radiation of energy (see e.g., Waas, 1972; Lysmer and Waas,
1972; Kausel, Roesset, and Wass, 1975; Bettess and Zienkiewicz, 1977;
Karasudhi and Rajapakse, 1984). However, frequency domain solutions are
limited to linear analyses.

Lysmer and Kuhlemeyer (1969) developed viscous boundaries in an
early attempt to provide a "silent boundary.'" These boundaries are
simple and can be used in both time and frequency domains. However,
they act as perfect absorbers only for a limited class of problems.
Cohen and Jennings (1983) give an exceilent review of the different
efforts made to provide a "silent boundary."

In recent years, the boundary element method (BEM) has become a
strong candidate for use in the analysis of structural/geotechnical
systems since it irhcrently satisfies tie radiation houndary condition.
In this study we concentrate on coupled solution approaches where boun-
dary eleament methods are combined with the finite element method. The

boundary element method is used to model the semi-infinite or infinite

domain. In particular, we consider BEM formulations based upon the




Stokes solution -- the analytical solution for a time varying con-

centrated load in an infinite domain.
Objectives

The objectives of this report are to provide: (1) the necessary
analytical and numerical background for time domain boundary element
methods based on Stokes's solution, and (2) a coupling algorithm for
combining the BEM with the FEM.

The ultimate objective of this research is to determine an effec-
tive numerical scheme for modeling nonlinear, dynamic structural/geo-

technical problems which have infinite domains.
Background

The use of integral equation formulations in the analysis of tran-
sient phenomena in solids and fluids dates back over 100 years to the
Helmholtz-Kirchoff integral formula, according to Manolis (1984). This
formula is the mathematical description of Hygens' principle (Baker and
Copson, 1939).

Though integral equation statements of wave propagation phenomena
have existed for many years, their numerical approximation has occurred
relatively recently. Among the early efforts were the works of Friedman
and Shaw (1962) and Chen and Schweikert (1963) in acoustics, and Banaugh
and Goldsmith (1963) in steady-state elastodynamics. Cruse and Rizzo
(1968) and Cruse (1968) were the first to apply the BEM to transient
elastodynamic problems. Their papers considered the BEM in conjunction
with a Laplace transformation to solve a half-plane wave propagation
problem. Other researchers considered methods using the Fourier trans-
formation instead of the Laplace transformation (see e.g., Niwa, Kobayashi,
and Azuma, 1975; Niwa, Kobayashi, and Fukni, 1976). Shaw (1985) gives
an overview of many different BEM formulations in elastodynamics.

The transformation methods have been highly developed, but to

address problems where the FEM region is characterized by nonlinear




behavior we must consider time domain approaches. Three time domain
approaches have been pursued. They differ in one of the most basic
aspects of the BEM -- the fundamental singular solution. The two sim-
pler approaches are based on fundamental singular solutions for elliptic
partial differential equations instead of the actual hyperbolic equations.

One of the approaches approximates the time derivatives by finite
difference (see e.g., Brebbia and Walker, 1980). The resulting partial
differential equation is solved by the boundary element method at each
time step. This method requires domain integrations of previous time
step displacement fields because of the finite difference approximation;
thus it would appear to have limited application for problems with semi-
infinite or infinite domains.

Another approach uses the Kelvin solution of elastostatic BE formu-
lations. The main idea behind this approach is to approximate the inertia
effects by expanding the displacement field throughout the domain in
terms of a special set of expansion functions. This approximation is
only used for the inertia terms and the expansion functions are neces-
sarily simple allowing the domain integration to be written in terms of
boundary integrations. Nardini and Brebbia (1982) first developed this
approach and then followed with several applications (Nardini and Brebbia,
1983 and 1986).

Later Ahmad and Banerjee (1986) used the concepts of complementary
functions and particular integrals to solve the free vibration problem
in elastodynamics. Though the derivation of their approach is different
than the previous work by Nardini and Brebbia, the resulting system of
equations is almost identical. The reader is advised to verify the com-
parisons made in this later work. Both of these approaches have been
applied effectively to bounded domain problems; however, I am unaware of
any work which has successfully applied them to unbounded domain problems.

The most rigorous time domain approach is based upon the fundamental
solution of elastodynamics -- the Stokes solution. This appears to be
the best suited approach for handling infinite domains. The fundamental
solution satisfies the radiation boundary conditions, and for quiescent
initial conditions with no body forces, the method requires no domain
integrations. However, its formulation includes a convolution of the

time variable and thus appears to be computationally intense.




Attempting to provide a more efficient solution to problems with
infinite domains, researchers (see e.g., Geers, 1983) have developed
simplified BEM formulations known as doubly asymptotic approximations
(DAA). Mita and Luco (1987) give an overview of the different BEM and
coupled FEM-BEM approaches which have been nsed to study the dynamics of

embedded foundations.
Scope

The scope of this work is limited to a discussion of time domain
BEMs which are based on the use of the Stokes solution. Both analytical
and numerical aspects of the formulations are presented. The analytical
roots of the formulations are presented in some detail; this provides a
strong background for future implementation. The emphasis is on the
direct BEM formulation but the indirect BEM is also presented. The
coupling algorithm treats the BEM region as a nonlinear boundary con-
dition for the FEM region. Equilibrium and displacement compatability
on the interface between the regions is satisfied in a nodal sense using

an iterative scheme.

THEORY

This section presents the analytical basis for time domain BEMs
based on the Stokes solution. The Nomenclature at the end of this report
presents an additional explanation of some of the symbols used in this
section. For additional detail the interested reader could see, for
example, Eringen and Suhubi's (1974, 1975) excellent texts on elasto-
dynamics. The later text is the main reference for this section.

The motivation for coupling the FE and BFE methods to solve a
boundary-initial value problem, is to apply each method to that portion
of the domain for which it is best suited (see Figure 1). The finite
element method in this formulation will he applied to a subdomain QF
which includes all portions of the domain that are nonlinear, inhomo-
geneous, or anisotropic. The boundary element method in this tormu-

lation will be applied to a subdomain QB which will be idealized as

4




consisting of a homogeneous, isotropic, linear elastic material subjected
to small displacements and deformations. The strength of the BEM is its
inherent ability to model infinite domains. The following section presents
the governing equations for QB -- the equations of linear elastodynamics.
For brevity, QB will be denoted as § since the following sections only

address the boundary element subdomain.
Elastodynamics Problem
Field Equations. The governing equations of motion are given by:

o,, ., +¢, = pu, (1a)
oy = g,,. (1b)

and the compatibility or kinematic equations are given by:

| )

£€,, = S iu, . u, |, 2

1} 2 1 i)+ 5,14 (2)
The BE subdomain is assumed to be an isotropic homogeneous linear

elastic material. Thus the governing constitutive relations, generalized

Hook's law, are given as:

oij = 2usij + xskkﬁij (3)

where \ and u are Lamé's constants expressed in terms of Young's modulus

(E) and Poisson's ratio (v) as

Y = Ev - _E
’ Lo 201+v)

(T (1-2v) (4)

Alternatively, the equations of motion (Equation 1), compatibility
relations (Equation 2), and constitutive relations (Equation 3) can be
combined into a linear system of hyperbholic differential equations in
terms of displacement as:

+ (x+u)uj + wi = pu, (5)

u R .
MYy, 53 Vi




These are the well known Navier equations of elastodynamics. These
equations are often written in a slightly different form which introduces
some of the complications that occur with vector hyperbolic equations.
The Stokes-Helmholtz resolution theorem states that every sufficiently
smooth vector field f(x,t) may be decomposed into irrotational and

solenoidal parts; that is, it admits the representation:

f= VE+9xF (6)

where the first term is curl free and the second term is divergence free.
Applying this to both the displacement and body force vector fields we

can write:

u = u +u u = V¢, u’ o= Voxx (7a)

and

¥

VE+V xF (7b)

where the scalar valued function, ¢, and the vector valued function, X,
are the Lamé potentials (Eringin and Suhubi, 1975). Substituting these
relationships into Equation 5 can show that the Navier equations are

satisfied if EP and HS satisfy:

AR T i’ vy np = (8)

respectively. In the absence of body forces, these equations yield the
familiar vector wave equations for irrotational and equivoluminal wave

propagation, respectively. These waves propagate with velocities given

by:
- [2u ST

Noting that X\ and u are positive implies that CP > CS and, thus,
the rationale for the subscripts: P for 'primary' corresponding to the
faster wave, and S for 'secondary' corresponding to the slower wave. In

addition to irrotational and primary, the P waves are referred to as:




dilational, pressure, compressional, and longitudinal waves. In addition
to equivoluminal and secondary, the S waves are referred to as: distor-

tional, shear, and transverse waves.

Navier's equations are otien written in terms of these wave speeds
as:
2 2 2 ..
C + - + =
S”i,jj {CP CS)uj,ji ‘l’i u (10)

The equations of motion, kinematic relations, and constitutive rela-
tions govern the problem ov r the deomain except for singular surfaces
where special jump conditions must be satisfied. The wave front of a
shock wave is an example of a singular surface. For additional details
on singular surfaces and the corresponding jump conditions see Eringen

and Suhubi (1974).

Initial Conditions. The initial conditions give the displacement

and velocity field throughout the domain as:

e R (11a)

il
=

((x)

o1

e

u,(x,0)

ﬁi(g,o) = v_.(x) x £ § (11b)

Boundary Conditions. The boundary conditions are given by:

ui(g.t) = ﬁi(g,t) e, teg |0,=) (12a)

U

g

ti(g,t) = Ei(g,t) X € PT , bt E [0,®) (12b)

where u(x,t) and £(x,t) are prescribed distribntions of boundary displace-
ments and tractions as a function of time. The simple notation does not
imply that the boundary conditions are mutunally exclusive; the fully-mixed

boundary value problem is addressed.

Radiation Boundary Conditions. [f the domain is unbounded, physics
places constraints on the behavior of the fields at infinity. Physical

reasoning suggests that if the applied loading is restricted to a finite




region, waves propagating from infinity into the interior of the domain
should not exist.
Radiation boundary conditions are attributed to Sommerfeld (1949).
He suggests the necessity of such a condition in the following discuzsion:
" oscillation problems (in constrast to potential problems) are
not determined uniquely by their prescribed sources in the finile
domain. This paradoxical result shows that the condition of
vanishinug at infinity is not sufficient, and that we have to
replace it by a stronger condition at infinity. We call it the
condition of radiation: the sources must be sources, not sinks of
energy. The energy which is radiated from the sources must scatter
to infinity; no energy may be radiated from infinity into the pre-

scribed singularities of the field."

Regardless of whether we are seeking a closed form or a numerical
solution, the radiation condition provides the same essential property
to our solution -- uniqueness.

It can be proven (Eringen and Suhubi, 1975) that the radiation con-
ditions of elastodynamics are direct consequences of the radiation con-
ditions on wave equations (Equation 8). The radiation conditions of

elastodynamics can be stated as:

lim r [Ep + pCP(agP/at)] = 0 (13a)
oo
lim r {_gs + qu(ags/at” = 0 (13b)

r‘)”

p , :
where t  and gs are traction vectors on a sphere of radius r, due to the
, P S . .
displacement components u and u, respectively. These conditions are
sufficient to guarantee that at infinity there will only be an outward

flow of energy; that is, reflections are eliminated.




Integral Equation Formulations

This section presents the integral equations on which both the direct
and indirect BEMs are based. Only the equations for the direct formula-
tion are developed in detail. The development of the direct formulation
in elastodynamics strongly parallels the development in elastostatics;
the two major components are a fundamental singular solution and a re-
ciprocal theorem. Kelvin's solution is replaced by Stokes's solution,

and Betti's reciprocal theorem is extended to Graffi's theorem.

Elastodynamic State. Prior to presenting Stokes's solution and
deriving Graffi's theorem, it is useful to have the definition of
elastodynamic state as given by Eringen and Suhubi (1975, Section 5.7).

Let Q be a spacial region with boundary ', and T a time interval.

[f u and o are, respectively, a vector-valued and a symmetric second-
order tensor-valued function defined on @ x T, we call the ordered pairs
Y = [u,0] an elastodynamic state on 2 x T with the displacement field u
and stress field d, corresponding to a body force density Y, mass density

p, irrotational wave speed C and equivoluminal wave speed CS’ provided

P’
that:

(a) uec?@xT, weclirxm, o % xm,

as Yec”%@xm, p>o0, Cp > 2/¥3 Cg > 0 (14)

(b) wu, a, Y, p, CP’ ar.d US satisfy the governing Equations 1, 2,
and 3.

The class of all elastodynamic states satisfying the above conditions

is denoted by E where we write:

y e E (¥Y,p,C,,C; R xT) (15)

p’Us’
When
T=T and u=0on 2 xT

we refer to Yy as an elastodynamic state of quiescent past and write:




y e £ (¥.0,Cp,Cqi 9) (16)

See Nomenclature at end of report for a description of the notation

used in the continuity conditions of (a) above.

Stokes's Solution. Stokes's problem consists of an infinite domain
subjected to a concentrated load at a point & which is fixed in direction
e, but has an arbitrary time varying magnitude. That is, we seek the

solution in an infinite domain where the body force is given as:

v (x,8) = £(t) 6(x-E) e (17)

The solution is the fundamental singular solution of elastodynamics
and is originally due to Stokes (1849) (also see Love, 1944, Section 212
or Eringen and Suhubi, 1975, Section 5.10). The displacement at a position

x and time t is given as:

u (x,t) = uij(g,t;élf) e (18a)
and
ulj(g,t;§|f) = (x t;E|f) + u (x LELE) (18b)
3r, P
P 2ley = 1| ___,1 . .
o ORI = ( 5 ) ] F(t-)r) d)
e 0
. riri / r )
53 f\t -G (18c)
r C P
P
10




.
3r.r, S
wS o (x,t8]6) = ( 1l 5 ) A f(t-Ar) d\
ig= " 4rpr r2 i )
0
r.r. c 6,j v 1
! 1
- r2C2 f(t CS) + C7 f(t - E;) (18d)
S S
;=X - Ei (18e)
. -
r =g, (18f)

S , . . ;
uij and uij are the irrotational and equivoluminal parts of the Stokes
tensor uij' Substituting this result into the kinematic (Equation 2)
and constitutive equations (Equation 3) one can obtain the stress at

(x,t) as (Eringen and Suhubi, 1975):

0y 5(x,6) = Oijk(z,t;élf) e (19a)
where
0, (X, EIE) = ob. (X, 6E[E) + oS (x.tiE[£) (19b)
ijk o ijkt B o ikt EEe
5r.r.r §,.r, +6,.r, +8, r,
of xotsElE) = —L Qe Ak L ik ik jkd
ijk 4“r2 S r3 r
“ 5 2
2C. (6r.r.r 6, r. +6, r, +8, r,
x I N f(t-hr) dx - > | ik iy k. ik ki
C2 r3 r
0 p
2
C r. 6, .
x f(t - §~) - (1 -2 4%} k_ij [f(t - é—) + - f(t - g—)]
P C 4 P P P
P
2r,r,r C2
. _1jk S f(t . L ) (19¢)
2 3 Ch
P
1




Sr.r,r 6,.r, + 8, r, +6,. r,
OS” (é;t;gif) - 1o 6 CZ _L_J_k_; - ,,,{Jﬁ,k ik j jk 1]
ijk ame? s 3 r
cgl
6rir.rk Gi'rk + Gikr‘ + G.kri
x f N f(e-hr) dh o+ 2 o P A 1
0 L
6'kr' 6 krl T r r
x f(t -é—) - = ——«—[f(t -C—) + f(t 'E—)]
S S S S
2r,r.rk .
s i f(t - I;J (19d)
r2C CS
S
Note that with the above notation we can consider uij and oijk as

operators on the time variation of the concentrated load f(t). The
quantities of the form (t-r/C) are referred to as retarded times; the
effect of the temporal variation of the load is retarded by the time it
takes a wave to travel from the source to the field point.

The elastodynamic state, which corresponds to Stokes's solution

with the concentrated force acting parallel to the x -axis, is referred

k
to as the Stokes state and denoted (Eringen and Suhubi, 1975, Section
5.10) by:
Y (x,t:8[f) = [gk(g,t;élf), ok(g,t;élf)] (20a)
where the vectors Ek and second-order tensors ok (k=1,2,3) are:
CE % = [%isx] (20b)

In particular, we will often need to refer to a class of Stokes's
states that have a quiescent past. Consider the following definition

given by Wheeler and Sternberg (1968):

12




Let § ¢ E3 and f be a twice continuously differentiable function of

time that vanishes on T , and p, CP’ C satisfy Equation 14. We call

g
[EE,OE] defined on E3£ x T by Equations 20, 18,

the state yi(;,t;gf)
and 19 the Stokes state of quiescent past for a concentrated force at §

parallel to the x, -axis corresponding to the force function f(t) and to

k
the material constants p, CP’ CS'

If we assume Equation 18 is valid for an impulse force, i.e.,
f(t) = 8(t-1), the substitution leads to the free space Green's

function:

Gij(g,t;g,T) = uij[ﬁ,t;glﬁ(t-T)] (21a)

t . .
So this expression gives the i h component of the displacement field
at (x,t) due to the jth component of a concentrated impulse acting at

(¢,71). In some contexts the Green's function is written for t = 0 as:

Gij(z,t;é) = Gij(z,t;§,0) (21b)

By considering the "sifting property" of the §-function, integration
g 4 p

of Stokes's solution gives the Green's function as:

Gij(z,tzﬁ,T) = 7

+ 1) .1_.. G(t' - Eﬁ) - 1 é(t' - L)
r2 CP CP CS CS
°1 :
+ 5(t' - —_) | (22)
Cs Cs

13




The above result for the displacement field, when substituted into

the kinematic and constitutive relations, gives the stress field as:

where
C2 t' r,r.r 6,.r, +6, r. +6, .1
T, (x,t:6,1) = — -5 |5 ik dijk dkj ki
ijk™= hr r2 r3 T

r CS S P
2
r.§, C
Sl 3 LUREAR L SRt
C P P P
P
6§, r, &, .r X
- _}k Ir i! k [G(t' _ éw) + éﬂ 6(t' - é—)} (23b)
S S S

By Cauchy's formula one can obtain the relationship for the traction

on a plane with unit normal n, as:

ti(lyt) = Fik(ﬁyt;gsr) ek(§) (248)
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where

Fie(tiln) = T, (x,658,1) n,(x) (24b)

It should be noted that many equivalent forms of Equations 22 and
23 are given in the literature. The above classical solutions to the
equations of elastodynamics are an essential element to the time domain
boundary element methods of this study. The second essential element is

the dynamic reciprocal theorem considered in the following section.

Dynamic Reciprocal Theorem. In elastoststics the Betti-Rayleigh
reciprocal work theorem provides a relationship between two distinct
equilibrium states. The dynamic reciprocal theorem can be written by
applying the D'Alembert principle -- including the inertia terms as a
part of the body force. By this approach, Rayleigh (1873) obtained a
theorem (Love, 1944, Section 121) from which Graffi's theorem (1946-1947)
can be deduced; we will take this approach in the following discussion.
For another proof of Graffi's theorem see, for example, Eringen and Suhubi
(1975, Section 5.8).

The following proof of Graffi's theorem is included for more than
the sake of completeness. A numerical method cannot be prcperly used,
let alone be implemented, without a basic understanding of the underlying
analysis. The development which follows also uses notation common to
much of the literature.

Consider two distinct elastodynamic states:

y = [u,0] € E(Y,p,C,,Cq; R x T (25a)

p’-s’
%* * % * +
y = [u,o0] e ECY 1P5CpsCgs 2 x T) (25b)

defined on Q with initial conditions:

u(x,0) = u(x)  ulx,0 = v (x (26a)
in @
* ¥ ok
u (x,0) = u(x) u(x0) = v(x) (26b)

The elastodynamic equilibrium equations for each state are given as:

15




where

oij,j +8, =0 (27a)
in Q
* *
oij,j + Bi = 0 (27b)
azui
Bi = p(Yi - 312) (28a)
2 *
o v ik 28b
50 = oY - ) (28b)

Betti's reciprocal theorem for two distinct equilibrium states is

given as (Sokolnikoff, 1956, Section 109):

this

* * k14 %

I t.u, dA + f B.u, dV = I t.u, dA + [ B.u, dv (29)
i'i ii i'i ii

T Y] r Q

Note that we can substitute Equation 28 into Equation 29. Since

4
expression is true for all t € T , we can integrate from O to t to

obtain:

t t 2 ¥*

* Yy _
] I tiu1 dA dt + f ] pY u, dv dt - [ ] P ——5 { dv dt =
orT 0
t t t 2

* % 3 u %
dA dt + oY u. dv dr - o u, dV dr (30)

tiYy i1 i

oT 00 09

Integration by parts of the time derivative terms gives:

t .2 *
9 ui(g,t) e %*
f — 5 ui(g,t) dr = ui(5,t) ui(z,t) - voi(z) “01(5)
T
0
t
- [ W (x,1) i (x,1) d (31a)
0
16




t .2
3 ui(é"t) % *
] — 5w x, 1) dr o= 0 (x,t) u(x,t) - v (x) u L (x)
3
0
t
. -*
- f ui(g,t) ui(g,t) dr (31b)
0

where ﬁi = dui/dt. Substituting these results into Equation 30 and showing

the independent variables explicitly, the following form of the reciprocal

theorem of elastodynamics is obtained:

t
*

[ ] <

0

t,(x,1) ui(g,t) dA(x) dt +

g —
O T, t

I p(x) Yt(g,I) u,(x,1) dV(x) dt
Q

p(z)[ﬁ:(z,t) u,(x,8) - v, (0) uoi(g)] dv(x)

t
0 ——

p(x) ¥, (x,1) uj(x,1) dV(x) drt

|

— S—

t
£,(x,0) uy(x,1) dAGx) dt + ]
0

0 ——

p(;)[ﬁicg,t) w0 - v () uzi(x)] dv(x) (32)

1
QD

Mansur and Brebbia (1985) derive the elastodynamic equivalents of
Somigliana's identities from this relationship. We will show the more
classical approach obtaining the same integral equations via Graffi's
theorem.

In obtaining Equation 32, we tacitly assumed that the two elasto-
dynamic states occurred at the same time, 1. Alternatively, we can, in
effect, integrate the y* state from t down to 0; that is, the reciprocal
theorem "compares'" the y* state at time t' = t-1 with the y state at

time 1. Then the integration by parts of Equation 31 becomes:

17




*
t azui(g,t-t)

312

t .2
37u,(x,1)

[ 5
0 3T

ui(g,t-t) dt

— ui(g,t) dt =

¥ .k
ui(g.O) ui(g,t) - ui(g,t) u

t
- f ui(g.t-I) ui(g,t) dt
0

o
w

= 0,060 u (x) - v (X)) (x, )

t
- J ui(g,r) ui(g,t-t) dt
0

oi —

(33a)

(33b)

We want the time derivatives that are outside of the time integrations

to Le taken with respect to t instead of T.

3 *
ui(ﬁvt—‘[) )

91 It

We now define:

u, = aui/at

Combining the results of Equation 33 with Fquation 30 and rearranging

terms gives:

[

T

O S—— et

* % .
+ voi(é) ui(z,t) + uoi(z) "i(

Noting that,

av’:
ui(z,t 1)

t

£, -0 uy(x,0) de daG) + [0 |[ ¥l 0wy a

Q@ 0

x,t)| dV(x)
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t t
= j j £ X0 i EoT) dt dACx) + [ o (x) j ¥ (x,1) Wx,to1) do
To Q 0
* '*
+ voi(g) ui(g,t) + uoi(g) ui(g,t) dv(x) (34)

This is Graffi's reciprocal theorem of elastodynamics. Thus the
dynamical reciprocal theorem is an extension of Betti's reciprocal theorem
of elastostatics. Most authors express Fquation 34 in terms of Riemann

convolutions (see Nomenclature) as:

] [t:*ui}(é,t) dA(x) +f p(x) [IYj*ui](é,t)
T Q

+ v:i(ﬂ) Ui(ﬁrt) + u:i(é) ﬁi(i’t)} dv(x)

= [ el e aaw + [ e {[Yi*U§](§,t)
T Q

F g0 it + ) 0| ave) (35)

In elastostatics, an integral equation statement of the boundary
value problem (Somigliana's identities) is derived from Betti's recip-
rocal theorem by using as one of the equilibrium states a state given by
the fundamental solution (Kelvin's solution). In the following section
an integral equation statement of the elastodynamics problem is derived
from Graffi's reciprocal theorem using Stokes's solution to define one

of the elastodynamic states.

Integral Equations for the Direct Boundary Element Method. The
integral equation statement derived in this section is an exact statement
of the elastodynamics problem. The numerical approximation of this state-

ment is presented in a later section.
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We apply Graffi's theorem to two elastodynamic states: y corresponds
to our elastodynamics problem and y* cerresponds to the Stokes state of
quiescent past where the body Inad is a concentrated impulse load applied
at 1=0 (i.e., the Green's function results of Equations 21 through 24).

Graffi's theorem is then written as:

Foxit-1:8) e (&) u.(x,1) dt dA(x)

o‘—n._\rf

T
t

+ [ ] 8(t-1) 6(x-§) e (&) u (x.1) dt dV(x)
Qo0

t
- f] t (6, 0) 6, (x,t-158) e, (§) dr dA(x)
To

t
+ P] ]Yi(ﬁy‘t) Gik(é,t-t;g) ek(g) dt
Q 0

+ v (%) Gik(&t;g) e (8) + u_.(x) éik(?s,t;é) e, (8) dV(x) (36)

As indicated in Equations 22 and 23, the times t and 1 always occur
in the Green's function (and the corresponding higher order tensors) as
the difference t-1. Physically, the response of the domain to a unit
impulse is a function of the elaspsed time since the impulse has occurred.
Mathematically, the Stokes solution (including the special case for the
Green's function) has the property of time translation. In particular,

let Bi represent Fik or G, then we have:

k ik’
B (x:t-138) = B, (x,t-138,0) = B (x,t58,1) (37)

By Equation 37 and the definition of the Dirac delta "function,"”

Equation 36 becomes:
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t
.
u (§,t) = f] [Gik(?s,t;i,r) t, (%0 - F o (x,t58,1) ul.()_m)] dt dA(x)
ro
t
] oprtien w00 ar AVt + Dty u) (38a)
Qo0
where
Ig(g.t;!o,go) = p[ [voi(_&) G (Xt 8) + u (%) Cik(é,t;i)J dv(x)
Q

Note that Ig(g,t;go,go) accounts for the e{fect of the initial con-
ditions on the displacement field. Two alternative forms which differ
only in notation are given below. The first form uses the convolution
notation and is often written in the literature in an even more concise

manner.
uk(g,t) = ] {[Gik*ti](g,t) - [Fik*ui](§’t)} dA(x)
r

1o v + 1 v (38b)
Q

The second form is expressed in terms of functional operators for
yz(g,t;glf), the Stokes state of quiescent past (Fringin and Suhubi,
1975, Section 5.11). It is given as:

w(g,t) = [ {uiklz,c;glti<5,c>t - t?kfx.t:zfui(g,t>1} dA(x)
T

+ j u?k[l,t;ilwi(ﬁ.t)] dv(x) + Ig(g,t;go‘go) (38¢c)
Q

where, by Cauchy's formula:

Rl B EEIE]L = ol [ GEIf] n (0

21




The equivalence ol the functional operator form (Equation 38c) to
the time convolutis n form (Equation 38a or 38b) is illustrated by Eringen
and Suhubi (1975). FEquation 38 is sometimes referred to as Love's (1944)
integral identity (Eringen and Suhubi, 1975, give additional historical
background). TLove (1944) considered IE(g,t;yo,go) in more detail showing
that the initial displacement and velncity at a point x affects a region
bounded by two spheres traveling at wave velocities CP and CS centered
at x (see Fringen and Suhubi, 1975). Equa! inn 38 is the elastodyramic
counterpart to Somigliana's first identity of elastostatics and plays
the same role in development of the direct BEM for elastodynamics.

The equation does not represent a solution to the elastodynamic
problem since the traction and displacement distribution along the
boundary ave only partially known. (For a well posed problem, only
"half" of the boundary information is known.) However, when applied to
the boundary, it provides an alternative analytical statement of the
boundary-initial value problem (BIVP). Consider applying Equation 38 to

an arbitrary point gr on T:

u (gr,t) = f (G, *t;1(x,t) dA(X) - ]t [F 7, 1(x,t) dA(x)
T T
t U -
+[ (6,9, (x.£) dV(x) + 12(EL tiy_,u ) (39)
Q

Note that the second boundary integration involves an improper in-
tegral to be interpreted as a Cauchy prinzipal value intergral. In general

this can be written as:

SING
e = > ¢
f [Fik ni](x,t) dA(x) Fik ui(gr,t) + [ [}ik ui](l't) dA(x) (40)

T T

SING | , . ) . .
where Fik is the singulari.y contribution and the last integral must
be intepreted as a Cauchy principal value integral. For smooth boundaries
FSING
ik

A) and Fquation 39 becomes:

= -1/2 6ik (see e.g., Cole, Kosloff, and Minster, 1978, Appendix
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3 u o) = H[Gik*til(,x.t) - [Fu ) (x, ) } dA(x)
r

+f [Gik*“’i]("-’t) dv(x) + IE(§r,t;yo,go) (41)
Q

This gives us a boundary integral equation (BIE) statement of the
boundary-initial value problem. Relations similar to Love's integral
identity can be obtained for strain, stress, and traction by applying
Fquations 2 and 3, and Cauchy's formula, to Equation 38; in a numerical
setting these suggested relations are often not used. The numerical
approximation of the above integral equations will be considered in
subsequent sections. First, we consider the integral equations which
the indirect boundary element method (TBEM) approximates in the next

section.

Integral Equations for the Indirect Boundary Element Method. The
integral equations which the IBEM numerically approximates can be deduced
from Equation 38. Banerjee and Butterfield (1981) present the analogous
development for steady-state and transient potential flow using an idea
originally due to Lamb (1932). Eringen and Suhubi (1975, Section 5.14)
derive the integral equations for elastodynamics by the same argument.
An overview of the derivation is presented below.

The indirect formulation can physically be visualized as embedding
the domain of the problem in an infinite space of the same media. The
traction distribution, along the surface corresponding to the boundary
of the original problem, is then sought which will satisfy the boundary
conditions.

The integral equations for this method can be derived from Equation

38 by considering two displacement houndary-initial value problems:

1. A displacement BIVP with body forces and initial conditions

defined on a domain  and specified boundary conditions on the boundary
r.
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2. A displacement BIVP in the compliment space QC having the same

boundary conditions but with nil body forces and initial conditions.

For a finite domain problem with boundary T, f and QC correspond to
the domains for the interior and exterior problems, respectively. Applying
Equation 38 to both problems and equating the two expressions (knowing

the boundary conditions are equal) gives the relation:

0 (,0) = [ 16,4150 dAE) + [ 16, %, 1(E,E) aveD)
T Q

U
+ Ii(g,t,go,go) (42a)

where the unknown vector valued function Pk(g,t) is the difference in

the boundary traction distributions for the two problems, given as:

PG = L&D - &0 (GO elxT (42b)

Pk(g,I) is often referred to as the fictitious or artificial traction
aistribution, it's artificial in the sense that it is a consequence of
embedding the problem in the infinite domain and has no meaning outside
of this context. To obtain the above relationship, symmetry of the Green's
function with respect to its indices and spacial arguments was employed.

Given the expression for the displacement field in Equation 42a,
the kinematic equation (Equation 2), constitutive relation (Equation 3),

and Cauchy's formula then give the traction field for a unit normal nj(g)

as:
g0 = [FeR 0 e + [ 1P a0 e
T Q
FIN(x,t5v ,u) (43)
k Ny ’__0’_0
where
Iz(g,t;yo,go) = p [ vor(d) Fo(atig) +u ) () f'”ik(z.t'&)] dv(g)
Q
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Similar expressions for the stress and strain fields are inter-

mediate steps in obtaining Equation 43, but often these expressions are

not used in the numerical formulation. 1If the artificial traction dis-
tribution were known, the response in the domain would be completely
defined by integral equations (e.g., Equation 42 gives the displace-
ment in the domain). To attain the artificial tractions, we bring the
response point to the boundary and enforce the boundary conditions.

To obtain the key integral equation which the IBEM is based on, we
assumed a displacement BIVP. In actuality, we apply the IBEM to the
fully-mixed BIVP and, thus, must consider traction boundary conditions
also. Note that while Equation 42 is regular upon integration, Equation
43 must be interpreted in a Cauchy principal value sense. The boundary

integral equations are then given as:

~

u (xp,t) = [ [Gik*f’k](g,t) dA(E) +J [6,, %, 1(&,t) dV(E)

T Q@
+ IU(x t'; ; ) Xp £ T (44a)
i=T’ 7’~0’~0o =T U
. = 1 p T %P
GO0 = 3 8 BGae) + [ (TP 10 dAD)
r
. ‘
b [ eI dve)
Q
+ IT(x t'; ; ) Xn € [ (44b)
i=T’ 7~ 0o’~0 T T
where """ and "-" have been used to explicitly indicate the known and

unknown field variables, respectively. In Equation 44b, the singular
contribution is based upon a smooth boundary and the sign depends upon
the orientation of the normal vector.

This integral equation approach is sometimes referred to as "an
integral equation representation by vector simple-layer potentials,"
which reflects its potential theory origins (see e.g., Jaswon and Symm,
1977). Equations 44a and 44b are vector Fredholm integral equations of

the first and second kinds, respectively.
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Among the differences between the integral equations on which the
DBEM and IBEM are based, note that for the TBEM integration of boundary

displacements has been eliminated and thus only a single boundary inte-

gration in terms of the artificial tractions remains. Because of the
symmetry in the Green's tensor, this provides a field-source interpie-
tation to the integral equations -- a physically meaningful interpreta-
tiomn.

In the following sections we cunsider the numerical approximation
of the integral equations decveloped above and how these numerical approxi-

mations might be combined with those of the FEM.

NUMERICAL SOLUTION

The above integral equation formulations provide a potentially
effective approach to modeling infinite domains. In the first sub-
sections below, we will consider the numerical approximations made in
the integral equations to obtain the direct and indirect BEMs. The
third subsection addresses how the efficiency of both BEMs can be
"optimized" by exploiting properties of the free-space Green's function
and modern computer hardware. The final subsection gives an overview of
coupling BEMs with the FEM by treating the BEM as a nonlinear boundary

condition on the FEM subregion of the problem.

Approximation of Integral Equations -- Boundary Element Methods

The following approximations are common to both BEMs: (1) the
integrations are performed in a piecewise manner, and (2) the boundary
integral equations are approximately satisfied in a boundary weighted
residual sense (usually by collocation). Though by tradition we appear
to be stuck with the name "boundary element methods," it is somewhat of
a misnomer; it suggests that analagous to finite elements (on the domain)
we will have boundary elements with known shape functions which constrain
the boundary displacement. We often use the same locally supported family
of polynomials in the BEM as the FEM uses as shape functions {(Lachat and

Watson, 1975); however, these functions merely facilitate the piecewise

26
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integrations and do not imply that the fields are actually constrained

to these interpolation functions. This implies that a coupling between

the BE and FE methods will be inherently incompatible. For a numericai

demonstration of this incompatibility in elastostatics see Cox (1988).
Let's consider the interpolation of boundary and domain quantities

before addressing a specific BEM. (The presentation given here is intended

for individuals familiar with the discretizations commonly made in BEMs;

for more detail, see Banerjee and Butterfield, 1981 or Brebbia, Telles,

and Wrobel, 1984.) The approximations for the displacement and traction

in terms of expansion functions in time and space (on T) are given as:

Nep Nrs
wt) =) ) N ) T(6) T (45a)
n=1 s=1
X, € T
2r
Nyp Nrs
_ -ns
ti(ér,t) = 2 2 Nn(§r) Ts(t) t. {45b)
n=1 s=1

Similarly if we let xi(gg,t) represent any of the vector-valued

field quantities in Equations 38 through 44, it can be approximated as:

NMP NTS
—_ -ms
X, (Xg,t) = 2 2 M (Xq) T (1) X, Xq € % (45¢)
m=1 s=1
where Nn(gr) = nth expansion function for traction or displacement
on T

Mm(gg) = mth expansion function for a field variable on Q

th , , .
Ts(t) = s expansion function for time

NNP = number of boundary expansion functions
NMP = number of domain expansion functions
NTS = number oi time expansion functions
ﬁ?s, E?S, i?s = expansion coefficients for the corresponding
quantities
27




In the more general case, each boundary and domain expansion could
be written in terms of unique expansion functions. For implementation
purpnses, let's be more specific instead of more general. The tine do-
main of the analysis [O,TA] is subdivided into NTS time intervals where
the time at the end of the jth interval is denoted as tj' In general,
it is not necessary that these time intervals (or steps) be of uniform
duration; however, as we will see in a later section, uniform steps allow
a more efficient time-stepping procedure. The boundary is discretized
into NEL surfaces which (despite the misnomer) will be referred to as
elements; the union of these surfaces spans the boundary. Associated
with the elements are N p nodal points occurring at the extremeties or

N
within the elements. Similarly, the domain is discretized into N

volume cells; the union of which spans the portions of the domaincgﬁere
nonzero body forces or initial conditions occur. Associated with the
cells are NMP cell points occurring on the verticies, edges, and within
the cells. Geometrically, the boundary elements and volume cells are
similar to FE shell and solid (e.g., brick) elements. So that the ex-
pansion coefficients will correspond to the nodal values of the corres-

ponding boundary values, the following is required:

N, (x,) B x, T (46a)

Ts(tj) st (46b)
where éj = position vector for the jth nodal point. Additionally, for
the expansion coefficients of the domain to correspond to the values at

the cell points, we require:

Mm(gj) = émj Ej e § (46c)

where Ej = position vector for the jth cell point.

So, as an example, ﬁ?s of Equation 45a is the displacement vector
at node n and time step s. As suggested at the beginning of this section,
the interpolation functions in space often correpond to the polynomial
shape functions of the FEM. Before proceeding, let's discuss a few im-

portant exceptions which clarify the terminology:
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1. An exception to this occurs with so-called "discontinuous elements."

The simplest example is the constant element where the integration over
the element treats the boundary value as a constant. In this case the
nodal point resides at the center of the element. Note that the use of
the term "node" here corresponds to a point where boundary values are
specified and, thus, for the constant element is not sufficient to also
define the geometry. With "discontinuous elements" it is easy to define
loading discontinuities if they occur along element boundaries; adjoining
elements simply have distinct node points approaching the element boundary.
In practice we let these points coincide and simply perform the necessary
bookkeeping to associate the corresponding boundary values with the correct
element. '"Discontinuous elements' will be further discussed in the next

section with regard to the collocation technique.

2. Another exception occurs for infinite domains where an interface
between BE regions extends to infinity, special interpolation functions

are required to formulate so-called "infinite boundary elements."

All of these interpolation functions have the mathematical attribute

referred to as '"local support;"

though they are defined over the whole
domain/boundary, they are nonzero only in adjoining cells/elements.
Local support will not provide a sparse system of equations as with the
FEM, however it does reduce assembly effort in forming the systems of
algebraic equations that approximate the integral equations.

The expansion functions in time can also be thought of as having

local support. These functions are defined such that:

[ 1, t =t
n
T () = | a, tt te(t ..t)
s i ’ s-1'"s
i=0
_ o, tg (e .t ]
29




That is, they are polynomial functions on the time step preceeding
tS. Different choices of the polynomial coefficients give various inte-
gration rules in time.

These interpolations are the first of two (principal) approximations
to be made. The second approximation addresses how the unknown boundary

values are obtained; how do we obtain the "best" expansion coefficients?

Direct Boundary Element Method. This section addresses the numerical
approximation of integral equations 38 and 41 -- the direct boundary
element method. As a stand-alone analysis tool or in a coupled solution,
Equation 41 must be approximated on the boundary to attain the unknown
boundary values. In this section we consider the application of the
DBEM as a stand-alone analysis tool; many of the equations are common to
the coupled solution approach. The response within the domain at any
point can then be calculated by integral equations like Equation 38.

Using the interpolations of the previous section, the boundary integral

equation (Equation 41) is approximated as:

“p
%uk(gst) = 2 ) (g’;i(g,t) th - £ ) u’i‘s)
n=1 s=1
Nup ) Nyp
+ 2 2 "glp (Bt ¥+ 2 (ETk(g,t) v
m=1 s=1 m=1
+ E?k(§,t) UZi) £el A ts(tj_l,tj] (47a)
where
t
gy (E,t) = IIGik(g,t;g,t) N (x) T_(1) dt dA(x) (47b)
ro
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t
f?:(g,t) = f [ Fik(é’t;g’T) N (x) T_(1) dt dA(x) (47¢)
T o
t
'8?i(§,t) = f I Gik(éytiéyf) Mm(§) TS(T) dt dv(x) (47d)
Q0
T = [ o uD 1 wm (47¢)
Q
g (E,t) = [éik(z,t;g) M_(x) dV(x) (47£)
Q

The local support of each interpolation function tacitly implies
reduced limits of integration in both time and space.

The nodal boundary values at the time tj are approximated by
satisfying the integral equation in a collocation sense with respect to
both time and space. Other boundary weighted residual techniques could
be used but collocation is the most prevalent. In time, collocation
occurs at the ends of the previously defined time steps; in space, the
nodes are the most common collocation points. Some researchers (see
e.g., Patterson and Sheikh, 1981 or Brebbia, Telles and Wrobel, 1984)
only collocate inside the elements to: (1) eliminate special singular
contribution calculations when geometric discontinuities coincide with
nodes, and (2) to simplify the element assembly procedures. Internally
collocated elements are often referred to as "discontinuous" or "non-
conforming'" elements -- another misnomer based on the shape function
fallacy. The following development does not exclude nodal collocation;
however, the singular contribution used to obtain Equation 41 would
change for a boundary point which does not have a unique tangent plane.

Applying Equation 47 to N  collocation points at the end of the

jth time step gives:

cp

Nee
5 * 3 ~

2 2 (1)(;JS t5 - "prptS us) + RY c=1,2...,N
cn m cn -C

n=1 s=1

N =
1]

0
1]

cp
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where
js ns T 3x3
Pon = [%k@c’tj)} ¢ R (48b)
LR P PN (48¢)
cn ik ¢’ 7j
5 = {t?s} e R (48d)
1 1
s _ ns 3
u = {u. } e R (48e)
n 1
MP j
m=1 s=1
NMP .
~m “m ~m “m 3
¥ 2 (gik(gc'tj) voi + gik(gc’tj) uoi) e R (48£)
m=1

Note that the vector Bg gives the effect of body forces and initial
conditions on the displacement at the collocation point. By combining
the singular contribution term on the left-hand side with the appropriate

DF matrices, one obtains:

2 2 (DGJS t5 - pFpdS gs) + RY c=1,2,...,N (49)
cn (04

n CP

If the collocation point coincides with the pth node, the relationship

*
between DF and DF is given as:

. .
pFiS = "ppiS 4 lis 6
cn cn
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where I is the identity matrix for RB. Combining the equations associated

with each collocation point into a single system of equations gives:

j-1
0 = 2 (GS t° - F° gs) +6 t - Fl uw +RJ (50)
s=1
where
| is is is |
DG DG . . . DG
11 12 INNP
js
s DG21
G = s = 1)2) s ]
js is
DG, ... . DG
| Nepl NepMp)
pFiS ppis priS |
11 12 lNNP
js
. DF21
F = s = 1,2, s J
js js
DFN 1 . DFN N
| cp CP NP |
[ s ] [ s ] [ 25 ]
s s °j
. LT . Uy .. Ry
E = 4 F o, u = J Foy R-] = 4 L s = 1’2, s ]
&; 9; Bﬁ
| NP | NP | "cP
N. .xN .. N
Assuming NCP = NNP’ we have GS, F° ¢ R EQEQ and ES, gs, BJ e R EQ
for all s where N_. = 3N = 3N,,,. As an alternative one could over-

EQ = cP NP

collocate the integral equations (N p» See e.g., Hutchinson, 1985)

cp Ny
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and then solve the resulting overdetermined system in a least squares
sense; however, its unlikely the overcollocation would be more effective
than solving the integral equations in a Galerkin sense.

As explicitly denoted by the .'s, the only unknowns are half the
boundary values at the current time step; actually this is an induction
assumption which we know is valid for j=1. 1In the following equation,
the induction is validated and a time stepping procedure is given.

Partitioning the boundary value vectors for the jth time step as:

j-1 . .
. - .. - j .. j .,
0 = 2 (GS t® - F° gs) + {6 6| Y] F! R 4% 1 + R (51)
1 2 tJ i "2 aJ =

and isolating the unknowns on the left-hand side gives the following set

of equations for the unknown boundary values:

et

[Gj - Fj} e [Fj - Gj] vl (GS tS - F° LS) -r (s2)
1 2 o 1 2 £ - =
~ —~ s=1

The left-hand side now consists of the product of a fully-populated
coefficient matrix with the vector of unknown boundary values at time
tj. The right-hand side of the system of equations is determined by
four physically meaningfull sets of values: (1) the known boundary
values at time tj, (2) all the boundary values (displacements and trac-
tions) at previous time steps, (3) the time variation of the body loads
to time tj’ and (4) the initial conditions.

The unknown boundary values at time Lj are obtained by solving the
above system of linear equations. With an approximation of the boundary
values, the response at any point in the domain over the period of the
j time step can be determined. FEquation 38 gives the necessary integral
equation for the displacement field. The numerical approximation of
Equation 38 parallels the numerical approximation of Equation 41 except,
instead of considering a boundary collocation point, we consider an in-
ternal (domain) response point. The following revisions of Equation 47
yield the numerical approximation of Fquation 38: (1) eliminate .the 1/2
factor on the left-hand side, and (2) interpret Equation 47¢ as a regular
integration since § £ Q.
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As noted in a previous section, similar relations for the stress
and strain fields can be easily derived. [If one wanted both the stress
and displacement fields in a region, it would probably be more efficient
to: (1) calculate the displacement at a regular grid of points in the
domain, and then (2) approximate the stresses by finite difference or
finite element approximations. In the later case the derivatives operate
on the interpolation functions which span regions between points of known
displacement.

Equation 52 reflects the numerical burden that is characteristic of
formulations which use integral equations in time -- convolution. The
followirg section will discuss some ideas which significantly lighten
this burden. These ideas on improving the numerical efficiency are
equally applicable to the indirect BEM, so let's first consider its

formulation in the following section.

Indirect Boundary Element Method. This section addresses the
numerical approximation of integral Equations 42 through 44 -- the in-
direct boundary element method. As a stand-alone analysis tool or in a
coupled solution, Equations 42 and 43 must be approximated on the boun-
dary to attain the artificial boundary tractions. In this section we
consider the application of the IBEM as a stand-alone analysis tool;
many of the equations are common to the coupled solution approach. In a
coupled solution approach, the equations "are applied a second time" to
determine the unknown boundary values. The amount of numerical effort
is essentinily equal to the direct method; however, the indirect method
calculates the artificial tractions as an intermediate step -- thus its
name. With the artificial tractions, the response in the domain at any
point can be calculated by integral equations like Equation 42a. Using
the interpolations of Equation 45, bhoundary integral Equation 44 is

written as:




vo(x,t) = 2 2 2 'gTi(z,t)wES
1 s

n=1 s= m&1 s=1
N
MP
{~m “m :m “m
* 2 [8ik (2 Vo + By (2o ”ok)
n=1

gsFU A ts(tj_l,tj] (53a)
where
t
gzi(g,t) = f f 6, (%, t55,1) N (E) T (1) dt dA(E) (53b)
T o
t
'g?i(ﬁ,t) = f f Gik(g,t;g,t) Mm(g) Ts(T) dt dv(&) (53c)
Qo0
Eme) = [ 60 M) ave) (534)
Q
By = [ G 0060 1 @) v (53e)
Q

Since the free space Green's functLion is symmetric with respect to
its spacial arguments and indices, the above integrations are equivalent
to those of Equation 47. 1In a similar manner, Equation 44b is approximated

as:

NNP i
; _ 1 = ns ns
n=1 s=]
NMP i NMP »
y MS “ms ~m ‘m |, ~m ‘m
m=1 s=1 m=1
KEFT A ts(tj_],tj] (54a)

36




where

t
f?;(g,t) = f [ Fik(é,t;g,I) Nn(g) TS(T) dt dA(%) (54b)
ro
'fTi(g,t) = [ j Fik(g,t;g,T) Nm(g) TS(I) dt dV(§) (54c)
0
et = [ Fusn e v (54d)
Q
Bt = [ F o e ave (Ste)
Q

As previously mentioned, the local support of the interpolation
functions tacitly implies reduced limits of integration in both time and
space.

Again we will limit the discussion to the collocation satisfaction
of the boundary integral equations. With the 1BEM we apply Equation 53a
to collocation points on TU and apply Equation 54a to collocation points
on FT. As previously mentioned, we are actually addressing the fully-
mixed BIVP; thus, the notation FU and FT is symbolic. Applying Equations

53a and 54a to NC collocation points at the end of the jth time step

p
gives:
NNP j
I is 58 | oo -
u’ 2 2 DGCn Eﬂ + Bgc ¢ 1.2,...,NCP (55a)
n=1 s=1
where
N.. ~ number of displacement boundary conditions at collocation
point ¢, 0 < NU <3
js ns NUX3
G, = [gik(zc,tj)] € R (55b)
j - NU
l_l,c = {ui(éc’tj)} e R (55¢)
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Note that the vectors ggi and Rgi give the effects of the body forces

and initial conditions on the displacement and traction boundary values,

respectively. By combining the singular contribution term with

*
priate DF matrices one obtains:

(55d)

(55e)

(56a)

point c,

(56b)

(56¢)

(56d) -

the appro-




If the collocation point coincides with the pth node, the relation-

*
shir hetween DF and DF is given as:

. * 3
pFiS = "pFiS:lis s

cn cn 2 js “np
Let NUEQ denot. the total number of equations associated with dis-

placement boundary conditions and N denote the total number of equations

TEQ
associated with traction boundary conditions; that is, if we indexed NU

and NT for each collocation point we would have:

NCP NCP
_ c _ c
NUEQ - 2 Ny NTEQ 2 Ny
c=1 c=1
+ = = = . N ini i :
where NUEQ NTEQ NEQ 3NNP 3NCP Combining the equations associated

with each collocation point into a single system of equations gives:

eS| ¢ | . .
= 2 . PS + 3 pd + rJ (58)
s=1 F F
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and G° and F° are assembled as shown for Fquation 50 except that the
order of the submatrices varies as indicated in Equations 55 and 55;
thus, some of the submatrices do not even exist. For example, if col-

location point number 3 corresponds to a point with traction boundary

conditions only (i.e., NT=3 and NU=0) then: (1) DG%: does not exist for
all j,s,n; and (2) DFJS e X3 for all j.s,n. So we have
N xN N xN
¢S ¢ R VEQ EQ 4 FS ¢ g TEQ EQ

such that the combination of these partition matrices gives square
matrices. Isolating the unknowns on the left-hand side gives the fol-
lowing set of equations for the artificial tractions at the the end of

the jth time step,

p° - R (59)

{lae1]
li

As previously discussed, the IBEM solves for the artificial traction
values instead of the unknown boundary values. With the artificial trac-
tions determined, unknown responses on the boundary or in the domain,
over the interval of the jth time step, can be calculated. As an example,
to calculate internal displacements an equation like Equation 53a can be
written, however x is not necessarily on FU; this also could easily be

expressed in matrix notation.
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Efficient Implementation. To use the term "efficient" in addressing
the numerical implementation of the time domain boundary element method
is a bit tongue-in-cheek; Equations 52 and 59 reflect the numerical burden
that is characteristic of formulations which use integral equations in
time -- convolution. In this section, we will see that the "bad news"
of the previous two sections can be softened considerably -- but not
forgotten. We will first consider a few properties of the Green's func-
tion which can be exploited and then consider how modern trends in com-
puter architecture, parallel processing, lend themselves to convolution.

Cole, Kosloff, and Minster (1978) appear to have been the first to
present the time domain DBEM for elastodynamics. The development in
their initial work, for the sake of a simplified explanation, was limited
to the two-dimensional case of antiplane strain (a scalar BIVP). Their
work contains an excellent discussion on how the Green's function proper-
ties can be exploited to improve numerical efficiency and how these prop-
erties motivate their selection of interpolation functions. We have
previously selected a class of interpolation functions and are concen-
trating on numerical efficiency in this section.

Initially, it appears that Equations 52 and 59 require the calcula-
tion of O(NT§NE9) coefficients; or following Cole, Kosloff, and Minster's
notation O(NTS cp

function has the property of time trans]ation which can be expressed as:

) discrete kernals, DGJ and Dng. However, the Green's

+ . .
Gij(g,t At;E, t+AL) Glj(g,t,g,I)

(60)

Flj(ﬂ)t+At;§_sT+At) Flj(ﬁyt;gvT)

If the temporal interpolation functions have the same property,

that is:

Tn+k(t+kAt) = Tn(t) (61)

then one has for the discrete kernals that,

DGj+k stk _ DGjS

cn cn
(62)

DI"J+k s+k DFjS

cn

41




For this property to be fully exploited, Equation 61 requires the
analysis to be limited to uniform time steps. With uniform time steps
only the full matrices relating the jth time step to the ISt time step
must be calculated. This includes matrices resulting from the numerical
approximation of both boundary and domain integrations. Exploiting this
property then reduces the number of discrete kernal calculations to
O(NTSNéP) assuming we are able to save matrices calculated at previous
time steps. For the DBEM (see Equation 52), this means at the jth time

step we must have saved 6° and F° for s=1,2,...,3-1 or ZNEQ(j-l) floating
peint numbers. Similarly, for the IBEM (see Equation 59) NEQ(j-l) float-

ing point numbers must be saved for a BE analysis. For a coupled solution
approach, the IBEM must also save ZNEQ(j-l) floating point numbers since
both the interface displacements and tractions are unknown. This will

be more apparent in the following section.

In a coupled solution approach adaptive adjustment of the time steps
in an analysis will greatly increase the cost associated with the BE
subdomain. If the time step size is only "occasionally" changed the
piecewise uniformity can be exploited but to a lesser advantage. The
determination of the "optimum" amount of adaptive time step adjustment
is a subject for numerical parameter studies.

The time translation property also indicates the possibility of
numerical instability. Cole, Kosloff, and Minster (1978) consider the
iterative process as being similar to a finite difference method on the
boundary where the difference molecule expands backward in time with
each step. They show that when a linear interpolation in time is used
for the tractions, the process is marginally stable in theory and they
also indicate it has been found to be unstable in practice.

Two more properties of the Green's function allow us to reduce the
number of unique coefficient calculations and associated storage. The
first property is causality, which simply says "there is no response at
a given point in the domain due to an impulse load until the dilational
wave has had time to travel to that point." Tt can also be seen (Equa-
tion 22) that the response of the point is again quiescent after the
shear wave passes. In general, the nonzero response in the domain due

to a concentrated impulse load is bounded by two spheres traveling at
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the speeds of the dialational and distortional waves, respectively. In

+
2 x T the region affected by the impulse load is bounded by two hyper-
cones with axes along the time axis (see e.g., Cole, Kosloff, and Minster,

1978). The causality and post shear wave quiescence can be expressed

as:
Gij(g,t;g,T) = 0 (t-T)CP < r (63a)
and
Gij(g,t;g,t) = 0 (t—t)CS > r (63b)
respectively.

We will inheiently violate both of these with the discrete kernals.
As indicated by Cole et al. (1978), the use of interpolators with separable
space and time dependence is noncausal. Consider the spacial linear
interpolation functions of the FEM. When the wave front passes a given
node the interpolation function instantaneously becomes nonzero in a
localized region. Since this region can extend beyond the wave front
there is a noncausal behavior in the numerical approximation; that is,
our numerical approximation results in responses at points prior to the
dilational waves arrival. Cole et al. (1978) indicate that they do not
expect the errors due to this effect to be large if very localized inter-
polators are used unless wavelengths comparable to the node separation
are encountered. So the motivation for using higher order elements to
reduce the number of degrees of freedom is opposed by the motivation to
reflect the causality property in the numerical model.

The causality property and post shear wave quiescence of the Green's
function cause many of the discrete kernals to be zero if we impose re-
strictions on the spacial and temporal interpolation functions. GCole et
al. (1978) give general requirements since they are motivating their
selection of interpolation functions. The restriction is simply the
local support of the interpolation functions in time and space; for our

interpolation functions this is expressed as:

N(x) = 0 |5-§n| > 1, (64a)
Ts(t) = 0 t < ts-] or t > ts (64b)
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where L is the maximum distance from X to any point on an element ad-
joining the nodal point. For interpolation functions associated with an
extreme node, L is bounded by the maximum of the two adjoining element
lengths. With the local suppori the discrete kernals reflect the

causality property as:

ln;js = jS = - - -

cn DFcn 0 (tj ts-l)CP < }En §cl L (65a)
jS = jS = - -

DG DF-_ 0 (tj t)Cs > [x -& | + L (65b)

This gives a lower limit on which discrete kernals are zero; for
some combinations of interpolation function and collocation points the L
are not needed in the inequalities of Equation 65. These relations
(Equation 65) can be thought of as the discrete analogs to the causality
property and post shear wave quiescence of the Green's function.

A numerical implementation can then use inequalities similar to the
above to eliminate many discrete kernal integrations and their subsequent
storage. For an out of core routine (i.e., where the coefficient matrices
are written to disk) one might save a Boolean variable prior to saving
each discrete kernal where the Boolean variable has the value of "true"
only if the discrete kernal values are nonzero. This would then only
require a 1-bit read for zero discrete kernals as apposed to a 576-bit
read (assuming a 64-bit real word).

Before we leave the subject of causality, we should note that Cole
et al. (1978) gave a criteria for the time step as At < L/(ZCP) where L
was the minimum element length. They discuss the motivation for this
criteria in terms of the backward causality cone (see the reference for
details). Other researchers (e.g., Manolis, 1983 and Karabalis and Beskos,
1984) suggest similar criteria for three-dimensional problems.

The last properties of the Green's function which can be exploited
to reduce the numerical effort are the spacial translational and rotational
symmetries. The translational symmetry can be expressed as:

Gij(§+§,t;§+§,t) = G (x,t58,1) (66)

j
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In general, these symmetries are not present in the discrete kernals
since the geometric descretization lacks spacial regularity; however,
for a coupled problem the geometry of the interface is relatively arbi-
trary and thus it can be defined to exploit these symmetries. The sim-
plest interface geometry for a dry dock might consist of a half cylinder
with hemispherical ends.

An implementation which exploits these symmetries would probably be
highly specialized being based on a given interface surface geometry.

The analysis cost would be reduced since there would be fewer numerical
integrations and associated storage; some of the integrations would be
identical to previous integrations and some could be obtained by the
orthogonal transformation of previous integrations. The analysis cost
would be reduced but the implementation cost would be increased. Sig-
nificant bookkeeping would be necessary to relate integrations to previous
integration results.

The last item to consider in this section is parallel processing.
The equations which arise in the numerical approximation of integral
equations lend themselves to parallel calculations. Consider the forms
of Equations 52 and 59. At each step the new coefficient matrices could
be calculated in a parallel manner assigning each processor to specific
elements. In addition, the matrix multiplications associated with the
boundary values (or artificial tractions) of previous steps could be
assigned to different processors. The parallel calculation of the matrix
multiplications necessitates either: (1) a large amount of dedicated
memory for each processor, or (2) an architecture which performs 10 in a
parallel manner also so the system would not be "bus limited."

In this discussion, we have tacitly assumed that the individual
integrations (i.e., Equations 47, 53, and 54), are efficiently evaluated.
We did not address the evaluation of these integrations. For details on
these calculations see: Banerjee and Ahmad (1985); Banerjee, Ahmad, and
Manolis (1986); and Ahmad and Banerjee (1988).

Assuming the BEM calculations are now efficient enough to be of
practical use, we consider how to combine the BEM with the FEM in the
next section. For examples of the application of the time domain BEM

see: Manolis (1983 and 1984); Karabalis and Beskos (1984, 1985, and
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1986); Karabalis, Spyrakos, and Beskos (1984); Mansur and Brebbia (1985);
Baner jee and Ahmad (1985); Banerjee, Ahmad, and Manolis (1986); and Ahmad
and Banerjee (1988).

Coupling the BEMs with the FEM

In this section we consider coupling the direct and indirect BEMs
to the FEM. The coupling approach is based on an idea presented by Dr.
Benjamin Loret (1987) during a seminar at the University of California,
Davis. In his presentation he gave the results of an iterative coupling
between the FEM and an integral equation method for a homogeneous half-
plane in elastostatics. The essence of his work was the treatment of
the BE subdomain as a nonlinear boundary condition to the FE subdomain.
We extend the idea to time domain problems in this section. Very brief
outlines of algorithms for the IBEM and DBEM are given; the FEM is not
presented in any detail.

As initially indicated in this report, the motivation for coupling
the two methods is to let each method model the portions of the domain
for which it is best suited. In particular, we apply the BEM to the
infinite domain at whatever distance we are willing to model the media
as a homogeneous, isotropic, linear elastic material. The remainder of
the problem, structure and soil, is modeled by the FEM which is well
suited to inhomogeneous, anisotropic, inelastic materials.

The problem is in general nonlinear since the constitutive law
governing the material behavior in the FF region is inelastic. We then
add another nonlinearity by treating the BE region simply as a nonlinear
boundary condition to the FE region. The main steps in the coupling are

outlined below:

1. Assume FI is fixed during the first time step. (Assumes the

body is at rest at the beginning of the analysis.)

2. With the given displacement boundary conditions on FI, use the

FEM to calculate the generalized nodal forces along FI.
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3. Assuming the BE region displaces like its interpolation functions
along the boundary, calculate the traction distribution on FI from the

generalized nodal forces.

4. With the given traction distribution at the end of the time

step, calculate the corresponding displacements along PI'

5. Repeat steps 2 through 4 until the nodal forces and displace-

ments converge.

6. Repeat steps 2 through 5 for each time step using as the initial
displacement estimate the interface displacement obtained at the end of

the previous time step.

The temporal aspects of the FEM are handled by a finite difference
approximation; the temporal aspects of the BEM are handled by a numerical
approximation of the convolution integral. The coupling of the two methods
iterates at each time step to approximately satisfy equilibrium and conti-
nuity at their interface.

We consider each of the BE formulations below in more detail. For
brevity assume the BE subdomain's boundary consists of PI alone. This

is not a limitation of the coupling method.

DBEM-FEM Coupling. Assumming traction boundary conditions,
Equation 52 can be written as:
Fa =64y (67a)

where
b = E(Gst-l-‘g + 3 (67b)

and Qj and éj are the interface displacements and tractions, respectively.
An overview of the coupling algorithm is presented below. The algorithm
is described in pseudo-code with a Pascal/Modula 2 dialect. Consistent
with the mentioned languages, supplemental comments which would not represent
actual code are enclosed with (* *)'s. The FE calculations are simply
represented by a single call to a procedure named FE_Calculations.
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FOR j:= 1 TO NTS DO (* for each time step *)
IF time steps are uniform THEN

FOR i:= j TO 2 BY -1 DO (* not executed for j=1 *)

G1:= Gl-l
F1:= Fl-l
END_for_i

Calculate G' and F'

IF j=1 THEN obtain LU factorization of F1 END_if
(* only factored once *)

ELSE (* only worst case is shown -- change on time step size each

step *)

FOR i:= 1 TO j DO
Calculate Gi and Fi

END_for_i

Obtain LU factorization of I-‘j
(* factored each step for worst case ¥)

END_if
Let éJ:= ﬁj_l (* i.e., initially estimate the interface
displacements at ti by known interface displacements

at t, 1 *)

Calculate b by Equation 67b (* contribution to known vector not
dependent on step j ¥*)
REPEAT (* the nonlinear boundary condition iteration *)
(* Perform the FE calculations based on the displacement BCs
on FI. Note that éj denote the generalized nodal forces

on FI. )

FE_Calculations(ﬁj, gj. iteration ccnvergence criteria,...)

Calculate the traction distribution t'i on FI for the BE
region by assuming nodal loads are obtained by weighting
the tractions by the interpolation functions.

Calculate a new interface displacement estimate by solving
Equation 67a for éj. Note that LU factorization
of Fj was previously obtained.

UNTIL nonlinear boundary condition iteration has converged

END_for_j.
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IBEM-FEM Coupling. Assuming traction boundary conditions, Equation

59 can be written as:

and EJ and EJ
respectively.

equation, the

)+ (68a)
. 3]
j-1 RFy
2 F p° - ; (68b)
s=1 RE%

L CPH

are the artificial and actual interface tractions,
With the artificial tractions obtained bv the above

unknown displacements along the interface can be obtained

by Equation 59 as:

S SRR S B
u G B° + by (69a)
where
~ o)
. [ od
1 RG]
by = 2 ¢° p° + ; (69b)
s=1 Bgé
L CP—

These two systems of equations can be nsed to couple the IBEM to

the FEM analagous to the approach used above for the NBEM. An overview

of the coupling algorithm {is presented below.
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FOR j:= 1 TO NTs DO (* for each time step *)
IF time steps are uniform THEN
FOR i:= j TO 2 BY -1 DO (* not executed for j=1 *)

¢h:= ¢t!
F1:= Fl—l
END_for_i

Calculate G1 and F1
IF j=1 THEN obtain LU factorization of F. END_if
(* only factored once *)
ELSE (* only worst case is shown -- change on time step size each
step *)
FOR i:= 1 TO j DO
Calculate Gi and Fi
END_for_i
Obtain LU factorization of F
(* factored each step for worst case *)

END_it

Let gd:= gd !

(* i.e., initially estimate the interface
displacements at tj by known interface

1 ::)

by Equations 68b and 69b, respectively

displacements at tj_

Calculate ET and QU

(* contributions to known vectors not dependent on step j *)
REPEAT (* the nonlinear boundary condition iteration *)

(* Perform the FE calculations based on the displacement BCs

on FI' Note that gj denote the generalized nodal forces on
- ™ .

FE_Calculations(éJ, §J, iteration convergence criteria, ...)
Calculate the traction distribution Lj on FI for the BE region
by assuming nodal loads are obtained by weighting the

tractions by the interpolation functions.
Calculate a new artificial traction vector estimate by solving

Equation 68a for EJ

Note that LU factorization of ¥ was previously obtained

Calculate a new interface displacenent estimate, QJ, by
Fquation 69a
UNTIL nonlinear boundary condition iteriation has converged

END_for_j.




...

Note that tne algorithms for coupling the direct and indirect BEMs
are very similar. For problems with zero body forces and a quiescert

past the two coupled approaches require the same amount of numerical

effort; when body forces or nonzero intial conditions exist the direct
method requires less computational effort. However, if many responses
within the BE region are obtained in an analysis the IBEM could require
less computational effort since it integrates the effect of a single
time varying vector (the artificial tractions) instead of two vectors

(the boundary displacements and tractions) like the DBEM.

Note that the above algorithms do not explicitly show:

® exploitation of causality property and post shear wave
quiescence

® details of how to exploit the time translation property when the
time step size changes only intermittently

® details of FE calculations

® internal response calculations for the BE region

® parallel calculation

® convergence criterias

As previously mentioned, the displacements along the boundary of
the BE region do not agree with the interpolation functions except at
the collocation points. Thus, the use of the interpolation functions as
shape functions, which they are not, to calculate the traction distribution
along the interface from the generalized nodal forces is inherently in
error; it also implies that we only satisfly continuity at the collocation
points. The inconsistency betweer ihe assumed and actual distribution
of the displacements could possibly be accounted for with a "weighting
approach'" by calculating the displacement at houndary points between
collocation points. At worst (assuming we have convergence) the incon-

sistency is a good indicator of when mesh refinement is necessary.




In the above algorithms we explicitly showed the FEM calculations
within the iterative loop for the nonlinear boundary conditions (BCs).
The FEM calculations themselves contain iterations to satisfy the con-
stitutive relations (among other things). Whether the constitutive
relations should be iterated to convergence within each BC iteration is
a subject for numerical studies. We are uncertain of the effects on
numerical efficiency and convergence. The BEM calculations in each BC

iteration are of O(N_. ) (assuming the BE region is not subdivided into

2
EQ
smaller subregions); thus, in the above algorithms we sought to minimize
the number of BC iterations. It might be most effective to have the
convergence criteria of the FE calculations become tighter as the BC

iterations converge.

CONCLUSIONS

The time domain boundary element methods based upon the Stokes
solution appear to be the best suited BE formulations for the coupled
solution of structural/geotechnical interaction problems that include
nonlinearities and infinite domains. The direct boundary element method
(DBEM) has a very elegant analytical basis which expresses the elasto-
dynamic boundary-initial value problem in an integral equation form using
the Stokes solution and the dynamic equivalent to Betti's reciprocal
work theorem. The integral equations for the indirect boundary element
mettiod can be derived from those for the DBEM by considering an exterior
and interior problem with a common boundary. An artificial traction
along the common boundary is determined which satisfies the boundary
conditions of the actual problem while displacement compatability of the
two problems is enforced. The analytical basis for both methods involves
integral equations in both time and space.

While the integral equations are very clegant theoretical formula-
tions, their numerical approximations are computationally very demanding.
For more efficient computations one can exploit certain properties of

the Green's function and modern computer hardware, such as parallel




processing; this requires considerable algorithm implementation effort
but appears to be a necessity for anything but an academic computer
program.

Time domain BEMs based upon Stokes's solution provide a very rig-
orous solution to the radiation boundary condition problem associated
with infinite domains. The theoretical and numerical background for the
methods provides a good basis for future implementation work. As to
whether the coupled solution approach wi'l provide a cost-effective
solution for problems with infinite domains, speculation is a poor sub-
stitute for numerical experience. However, carcf:l algorithm design
and computer hardware advances will improve the potential of applying

the methods to large structural/geotechnical problems.
RECOMMENDATIONS

The following outlines the recommended steps for the development of
a coupled FEM/BEM computer code for the dynamic analysis of soil-structure
interaction problems:

1. Investigate the numerical integrations necessary for the BEM in
elastodynamics. That is: (a) classify the different integrations (e.g.,
singular versus nonsingular), (b) determine appropriate numerical integra-

tion schemes, and (c) investigate the accuracy of the numerical schemes.

2. Develop a simple stand-alone BEM computer program for elasto-

dynamics.

3. Extend the BEM program Lo exploit Green's function properties.

4. Extend the BEM program to exploit parallel processing hardware.

5. Extend the BEM program for use in a coupled FEM-BEM solution.
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NOMENCLATURE

A partial list of symbols used in this report follows.

Mathematical Symbols

0 (x,t) € @ x T
t A

[¢*x](x,t) = f ¢(x,t-1) x(x,1) dr, (x,t) € € x T
0

where ¢ and X are such that {¢(x,t),x(x,t)} ¢ CO’O(Q X T+).

This defines the Riemann Convolution. For brevity it is often denoted
as simply ¢*X.

Script Symbols

E Class of all elastodynamic states.
EO Class of all elastodynamic states of quiescent past.
Y An elastodynamic state.

Latin Symbols

Cm’n(Q x T) Defines the class of all functions which have continuous
spacial and temporal derivatives of order up to and
including m and n, respectively, on Q x T.

E3 Three-dimensional Euclidian space corresponding to R3.
E3£ Three-dimensional Euclidian space F.3 omitting the point §.
R" The linear space of ordered n-tuples of real numbers.
T+ The time interval [0,~). Where [ and ) denote the
closed and open ends of the interval, respectively.
T The time interval (-«,0].
" = TUuT
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Greek Symbols

Gij Kronecker delta symbol.

8(x,2) Dirac 'delta function.'

Eij Strain tensor in rectangular Cartesian system.

T Complete, finite boundary of the problem.

Uij Stress tensor in rectangular Cartesian system.

Q Domain of the problem.

wi Vector of body forces per unit volume.

Yi Vector of body forces per unit mass.

p Mass density at a given point in the domain.

3 Position vector to a point on the boundary of the problem.
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Figure 1. Elastodynamics problem using coupled solution approach.
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Peart Harbor, HI: Code 500. Great Lakes. IL: Code 500, Oakland, CA: Library (Code 134). Pearl Harbor.
HI: Library. Guam. Mariana Islands: Library, Norfolk, VA: Library. Pensacola. FL: Library, Yokosuka,
Japan: Tech Library. Subic Bay. RP

SPCC PWO (Code 08X). Mechanicsburg. PA

SUBASE Bangor. PWO (Code 8323). Bremerton, WA

SUPSHIP Tech Library. Newport News., VA

USDA Ext Serv (T Maher). Washington, DC: For Sve¢ Reg 8. (Bowers). Atlanta, GA: For Svc, Reg Bridge
Engr. Aloha. OR: For Svc. Tech Engrs. Washington. DC

USNA Ch. Mech Engrg Dept. Annapolis, MD: Ocean Engrg Dept (McCormick). Annapolis, MD: PWO.
Annapolis, MD

CALIFORNIA STATE UNIVERSITY C.V. Chelapati. Long Beach. CA

CASE WESTERN RESERVE UNIV CE Dept (Perdikaris), Cleveland. OH

CATHOLIC UNIV of Am. CE Dept (Kim). Washington. DC

CITY OF LIVERMORE Dackins, PE. Livermore. CA

CLARKSON COLL OF TECH CE Dept (Batson). Potsdam, NY

COLORADO STATE UNIVERSITY CE Dept (Criswell), Ft Collins, CO

CORNELL UNIVERSITY Civil & Environ Engrg (Dr. Kulhawy), Ithaca. NY: Library, Ithaca. NY

DAMES & MOORE Librarv. Los Angeles, CA

FLORIDA ATLANTIC UNIVERSITY Ocean Engrg Dept (Su). Boca Raton. FL

FLORIDA INST OF TECH CE Dept (Kalajian). Metbourne. FL

GEORGIA INSTITUTE OF TECHNOLOGY CE Scol (Kahn). Atlanta. GA: CE Scol (Swanger), Atlanta, GA:
CE Scol (Zuruck). Atlanta, GA

INSTITUTE OF MARINE SCIENCES Library. Port Aransas. TX

JOHNS HOPKINS UNIV CE Dept (Jones). Baltimore. MD

LAWRENCE LIVERMORE NATL LAB FJ Tokarz, Livermore. CA; Plant Engrg Lib (L-654), Livermore, CA

LEHIGH UNIVERSITY Linderman Library. Bethlechem. PA

LONG BEACH PORT Engrg Dir (Allen). Long Beach. CA

MICHIGAN TECH UNIVERSITY CE Dept (Haas), Houghton, Mi

MIT Engrg Lib. Cambridge. MA: Lib, Tech Reports, Cambridge. MA

NATL ACADEMY OF SCIENCES NRC, Naval Studies Bd, Washington, DC

NEW MEXICO SOLAR ENERGY INST Dr. Zwibel, Las Cruces. NM

OREGON STATE UNIVERSITY CE Dept (Hicks), Corvallis. OR

PENNSYLVANIA STATE UNIVERSITY Gotolski, University Park. PA; Rsch Lab (Snyder), State College,
PA

PORTLAND STATE UNIVERSITY Engrg Dept (Migliori). Portland, OR

PURDUE UNIVERSITY CE Scol (Lconards). W. Lafayette. IN; Engrg Lib, W._ Lafayette. IN

SAN DIEGO PORT Port Fac, Proj Engr, San Diego, CA

SAN DIEGO STATE UNIV CE Dept (Krishnamoorthy), San Diego, CA

SEATTLE PORT W Ritchie. Scattic. WA

SEATTLE UNIVERSITY CE Dept (Schwaegler), Seattle, WA

SOUTHWEST RSCH INST Energetic Sys Dept (Esparza), San Antonio, TX: King. San Antonio, TX; M.
Polcyn. San Antonio, TX: Marchand. San Antonio, TX

STATE UNIVERSITY OF NEW YORK CE Dept (Reinhorn). Buffalo. NY. CE Dept. Buffalo, NY

TEXAS A&M UNIVERSITY CE Dept (Machemehl), Coliege Station, TX; CE Dept (Niedzwecki), College
Station. TX: Occan Engr Proj. College Station, TX

UNIVERSITY OF CALIFORNIA CE Dept (Fenves). Berkeley. CA: CE Dept (Fourney), Los Angcles, CA;
CE Dept (Gerwick,, Berkeley, CA; CE Dept (Taylor), Davis, CA; CE Dept (Williamson). Berkeley, CA;
Naval Archt Dept, Berkeley, CA

UNIVERSITY OF HARTFORD CE Dept (Keshawarz). West Hartford, CT

UNIVERSITY OF HAWAII CE Dept (Chiu), Honolulu, HI: Manoa, Library, Honolulu, HI; Ocean Engrg
Dept (Ertckin), Honolulu, HI

UNIVERSITY OF ILLINOIS Library. Urbana, IL; Metz Ref Rm, Urbana. 1L

66

_




UNIVERSITY OF MICHIGAN CE Dept (Richart), Ann Arbor, MI

UNIVERSITY OF NEBRASKA Polar Ice Coring Office. Lincoln. NE

UNIVERSITY OF NEW MEXICO HL Schreyer. Albuquerque. NM: NMERI (Bean). Albuquerque. NM:
NMERI (Falk). Albuquerque. NM: NMER! (Leigh). Albuquerque, NM

UNIVERSITY OF PENNSYLVANIA Dept of Arch (P. McCleary), Philadelphia, PA

UNIVERSITY OF RHODE ISLAND CE Dept (Kovacs), Kingston. RI: CE Dept. Kingston, Rl

UNIVERSITY OF TEXAS CE Dept (Thompson). Austin. TX: Construction Industry Inst. Austin, TX: EC)
4.8 (Breen). Austin. TX

UNIVERSITY OF WASHINGTON CE Dept (Mattock). Seattle. WA

UNIVERSITY OF WISCONSIN Great Lakes Studies Cen. Milwaukee, WI

WASHINGTON DHHS. OFE PHS (Ishihara). Scattle. WA

ADVANCED TECHNOLOGY. INC Ops Cen Mgr (Bednar). Camarillo. CA

AMERICAN CONCRETE INSTITUTE Library. Detroit. MI

ARVID GRANT & ASSOC Olvmpia, WA

ATLANTIC RICHFIELD CO RE Smith. Dallas. TX

BATTELLE D Frink. Columbus. OH

BECHTEL CIVIL. INC Woolston, San Francisco. CA

BETHLEHEM STEEL CO Engrg Dept (Dismuke). Bethlechem, PA

BRITISH EMBASSY Sci & Tech Dept (Wilkins). Washington., DC

BROWN & ROOT Ward, Houston, TX

CANADA Viateur De Champlain, D.S.A.. Matane. Quebec

CHEVRON OIL FLD RSCH CO Strickland. La Habra, CA

CHILDS ENGRG CORP K.M. Childs. Jr. Medfield, MA

CLARENCE R JONES. CONSULTN. LTD Augusta. GA

COLLINS ENGRG. INC M Garlich, Chicago. IL

CONRAD ASSOC Luisoni, Van Nuys., CA

CONSOER TOWNSEND & ASSOC Schramm. Chicago. 1L

CONSTRUCTION TECH LABS. INC G. Corley, Skokie, IL

DAVY DRAVO Wright. Pittsburg. PA

DILLINGHAM CONSTR CORP (HD&C). F McHale. Honolulu. HI

1 Ong Yam Chai. Singapore

EARL & WRIGHT CONSULTING ENGRGS Jensen. San Francisco. CA

EVALUATION ASSOC. INT MA Fedele, King of Prussia, PA

GRUMMAN AEROSPACE CORP Tech Info Ctr, Bethpage, NY

HALEY & ALDRICH. INC. T.C. Dunn, Cambridge. MA

HARTFORD STEAM BOILER INSP & INS CO Spinelli. Hartford, CT

HAYNES & ASSOC H. Haynes. PE. Oakland. CA

HIRSCH & CO L Hirsch, San Diego. CA

HJ DEGENKOLB ASSOC W Murdough, San Francisco. CA

HUGHES AIRCRAFT CO Tech Doc Cen. El Segundo. CA

INTL MARITIME, INC D Walsh, San Pedro, CA

IRE-ITTD Input Proc Dir (R. Danford). Eagan. MN

JOHN J MC MULLEN ASSOC Library. New York. NY

LEO A DALY CO Honolulu, HI

LIN OFFSHORE ENGRG P. Chow. San Francisco CA

LINDA HALL LIBRARY Doc Dept. Kansas City, MO

MARATHON OIL CO Gamble. Houston, TX

MARITECH ENGRG Donoghue, Austin, TX

MC CLELLAND ENGRS, INC Library. Houston, TX

MOBIL R&D CORP Offshore Engrg Lib, Dallas. TX

MT DAVISSON CE. Savoy. IL

EDWARD K NODA & ASSOC Honolulu, HI

NEW ZEALAND NZ Concrete Rsch Assoc, Library, Porirua

NUHN & ASSOC A.C. Nuhn, Wayzata, NM

PACIFIC MARINE TECH (M. Wagner) Duvall. WA

PILE BUCK. INC Smoot, Jupiter, FL

PMB ENGRG Coull, San Francisco, CA

PORTLAND CEMENT ASSOC AE Fiorato, Skokie, IL

PRESNELL ASSOC. INC DG Presnell. Jr, Louisville, KY

SANDIA LABS Library, Livermore, CA

SARGENT & HERKES, INC JP Pierce, Jr, New Orleans. LA

SAUDI ARABIA King Saud Univ, Rsch Cen. Riyadh

SEATECH CORP | croni, Miami, FL

SHELL OIl. CO E Doyle. Houston, TX

SIMPSON. GUMPERTZ & HEGER, INC E Hill. CE. Arlington. MA

TRW INC Crawford. Redondo Beach, CA: Dai. San Bernardino, CA: Engr Library. Cleveland. OH: Rodgers.
Redondo Beach, CA
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TUDOR ENGRG CO Ellegood. Phoenix. AZ

VSE Ocean Engrg Gp (Murton). Alexandria. VA

VULCAN TRON WORKS, INC DC Warrington, Chattanooga. TN
WESTINGHOUSE ELECTRIC CORP Library, Pittsburg. PA
WISS. JANNEY. ELSTNER. & ASSOC DW Pfeifer, Northbrook, IL
WISWELL. INC G.C. Wiswell, Southport, SC
WOODWARD-CLYDE CONSULTANTS West Reg, Lib, Oakland, CA
BROWN, ROBERT University., AL

BULLOCK. TE La Canada. CA

CHAO. JC Houston, TX

CLARK. T. Redding. CA

GIORDANO. A.J. Sewell. NJ

HARDY. S.P. San Ramon. CA

HAYNES. B. No. Stonington. CT

HEUZE. F Alamo. CA

KOSANOWSKY. S Pond Eddy. NY

NIEDORODA. AW Gainesville, FL

PETERSEN. CAPT N.W. Pleasanton. CA

QUIRK. J Panama City, FL

SPIELVOGEL. L Wyncote. PA

STEVENS. TW Dayton, OH

VAN ALLEN. B Kingston. NY
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INSTRUCTIONS

The Nava! Civil Engineering Laboratory has revised its primary distribution lists. The bottom of the
label on the reverse side has several numbers listed. These numbers correspond to numbers assigned to
the list of Subject Categories. Numbers on the label corresponding to those on the list indicate the
subject category and type of documents you are presently receiving. If you are satisfied, throw this card
away (or file 1t for later reference).

It you want to change what you are presently receiving:

Delete - mark off number on bottom of labei.

Add - circle number on list.

Remove my name from all your lists - check box on list.

Change my address - line out incorrect line and write in correction (DO NOT REMOVE LABEL).

Number of copies should be entered after the title of the subject categories you select.

Fold on line below and drop in the mail.

Note. Numbers on label but not listed on questionnaire are for NCEL use only. please ignore them.

Fold on line and stapie.

DEPARTMENT OF THE NAVY | || " |

Navai Civil Engineering Laboratory
Port Hueneme. CA 93043-5003

NO PCSTAGE
Official Business NECESSARY
Penalty for Private Use. $300 IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 12503 WASH D.C.
POSTAGE WILL BE PAID BY ADDRESSEE

Commanding Officer

Code L34

Naval Civil Engineering Laboratory
Port Hueneme. California 93043-5003




DISTRIBUTION QUESTIONNAIRE
The Navai Civil Engineering Laboratory is revising its Primary distribution lists

SUBJECT CATEGORIES

1 SHORE FACILITIES

2 Construction methods and materials (including corrosion
control. coatings)

Waterfront structures (maintenance’deterioratior. control)

Utilities {including power conditioning)

Explosives safety

Aviation Engineering Test Facilities

Fire prevention and control

Antenna technoiogy

Structural analysis and design (including numerical and
computer techniques)

10 Protective construction (including hardened shelters.

shock and vibration studies)
11 Soil/rock mechanics
14 Airfields and pavements

OCoO~NOHOEWL

15 ADVANCED BASE AND AMPHIBIOUS FACILITIES

16 Base farilities (including sheiters. power generation. water
supplies)

17 Expedient roads/airfields/bridges

18 Amphibious operations (including breakwaters wave forces)

19 Over-the-Beach operations (including containerization
material transfer lighterage and cranes)

v ~OL storage. transfer and aistribution

TYPES OF DOCUMENTS
85 Techdata Sheets 86 Techmcal Reports and Technical Notes
83 Table of Contents & index to TDS

28
29

30
31

32

ENERGY/POWER GENERATION

Thermal conservation (thermal engineering of buildings. HVAC
systems. energy loss measurement. power generation)

Controls and elfectrical conservation {electrical systems.
energy monitoring and control systems)

Fuel flexibility (liquid fuels. coal utilizatiori. energy
from solid waste)

Alternate energy source (geothiermal power. photovoitaic
power systems. solar systems. wind systems. energy storage
systems)

Site data and systems integration (energy resource data.
energy consumption data. integrating energy systems)

ENVIRONMENTAL PROTECTION

Hazardous waste minimization

Restoration of installations (hazardous waste)

Waste water management and sanitary engineering

Qil pollution removal and recovery

Air pollution

OCEAN ENGINEERING

Seafloor soils and foundations

Seafloor construction systems and operations (including
diver and manipulator tools)

Undersea structures and materials

Anchors and moorings

Undersea power systems, electromechanical cables
and connectors

Pressure vessel facilities

Physical environment (including site surveying)

Ocean-based concrete structures

Undersea cable dynamics

NCEL Guides & Abstracts
Physical Security

D None-

remove my name




